Isomorphism invariants for Abelian groups modulo bounded groups
نویسندگان
چکیده
منابع مشابه
Isomorphism invariants for actions of sofic groups
For every countable group G, a family of isomorphism invariants for measurepreserving G-actions on probability spaces is defined. In the special case in which G is a countable sofic group, a special class of these invariants are computed exactly for Bernoulli systems over G. This leads to a complete classification of Bernoulli systems for many countable groups including all finitely generated l...
متن کاملnon-divisibility for abelian groups
Throughout all groups are abelian. We say a group G is n-divisible if nG = G. If G has no non-zero n-divisible subgroups for all n>1 then we say that G is absolutely non-divisible. In the study of class C consisting all absolutely non-divisible groups such as G, we come across the sub groups T_p(G) = the sum of all p-divisible subgroups and rad_p(G) = the intersection of all p^nG. The proper...
متن کاملThe isomorphism problem for computable Abelian p-groups of bounded length
Theories of classification distinguish classes with some good structure theorem from those for which none is possible. Some classes (dense linear orders, for instance) are non-classifiable in general, but are classifiable when we consider only countable members. This paper explores such a notion for classes of computable structures by working out a sequence of examples. We follow recent work by...
متن کاملComputing the Invariants of Finite Abelian Groups
We investigate the computation and applications of rational invariants of the linear action of a finite abelian group in the non-modular case. By diagonalization, the group action is accurately described by an integer matrix of exponents. We make use of linear algebra to compute a minimal generating set of invariants and the substitution to rewrite any invariant in terms of this generating set....
متن کاملComputation of invariants of finite abelian groups
We investigate the computation and applications of rational invariants of the linear action of a finite abelian group in the non-modular case. By diagonalization, such a group action can be described by integer matrices of orders and exponents. We make use of integer linear algebra to compute a minimal generating set of invariants along with the substitution needed to rewrite any invariant in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1968
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1968.24.71